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Abstract 

In this paper, we propose a probabilistic framework for memory-based reasoning (MBR). The 
framework allows us to clarify the technical merits and limitations of several recently published 

MBR methods and to design new variants. The proposed computational framework consists of 
three components: a specification language to define an adaptive notion of relevant context for 
a query; mechanisms for retrieving this context; and local learning procedures that are used to 
induce the desired action from this context. We primarily focus on actions in the form of a 
classification. Based on the framework we derive several analytical and empirical results that shed 
light on MBR algorithms. We introduce the notion of an MBR transform, and discuss its utility 
for learning algorithms. We also provide several perspectives on memory-based reasoning from a 

multi-disciplinary point of view. 0 1998 Published by Elsevier Science B.V. 
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1. Introduction 

Reasoning can be broadly defined as the task of deciding what action to perform in a 

particular state or in response to a given query. Actions can range from admitting a patient 

into a hospital, moving to the right position to catch a baseball, prefetching a page in a 
computer system, or performing a financial transaction. If the domain is finite and the 

number of states is small, reasoning can be solved simply by retrieval from a table that 
enumerates all states and their associated actions. However, in most domains this is not 
feasible. As a result, reasoning takes many forms. One common approach to reasoning 

from data is to first induce a model of the data (a knowledge representation) such as 
a set of rules or a probability distribution, and later perform reasoning by deduction or 
probabilistic inference. Another approach is to use a set of stored experiences as the 

basis for answering queries about newly encountered states. Direct reasoning from stored 
Inemories relies on retrieving a relevant context upon encounte~ng a new event and 
choosing the appropriate action by performing interpolation or extrapolation from a set 

of similar instances contained in the context. With the substantial growth in availability 
of scientific and commercial databases, the potential uses for this latter form of reasoning 
are rapidly expanding. This paradigm of performing inferences from data is often broadly 

referred to as ~~~?~~~~-bu.~~~ r~u.s~?z~ng (MBR). 
~elnory-based reasoning has been used successfully in a number of domains such as 

classification of news articles [28], census data [ 121, software agents 1271, computational 

biology [ 14,48,49]. robotics 141, diagnosis 181, computer vision [17], and many other 
pattern recognition and machine learning applications. For a broad overview of many 
recent trends in this area please refer to [ 11 and Section Il. Given this popularity, it 
is iinportant to define a unified framework for this work which will s~ndardize the 

components of some MBR systems, unify programming notation, and provide the basis for 
theoretical studies. This paper makes a smah step in this direction. In this paper we outline 
a probabilistic framework for a class of MRR methods. The emphasis is on memory-based 

classification, although we point out directions to generalize the work to more general 
reasoning tasks. This formalism is motivated by the method originally proposed by Stanfill 
and Waltz 1421. The framework clarifies the technical merits and l~nlitat~ons of the original 

approach and the papers that followed it. With the large number of publications on this 
form of MBR, it is particularly important to shed light on this paradigm. 

2. The i%‘IBR framework 

Our general definition of a probabilistic MBR framework has several components. 
( 1) A stored database of examples is used as the implicit storehouse on which to base 

all reasoning. The database contains a collection of data points. These points can be 

binary vectors, real-valued vectors, or vectors with symbolic attributes. To keep the 
discussion informal we will refer to these points as objects, instances or examples. 

(2) The user specifies a probabilistic model that will be fit to data. This specification 

includes a set of random variables associated with different features in the 
data. The user also specifies a set of probabilistic assumptions such as priors 



and independence assumptions. Such knowledge can be expressed using Bayes 
networks (see Pearl [33]), which provide graphical support for specifying complex 
probability distributions. The difficulty of this step is obviously related to the 
complexity of the model that the user wants to impose on the data. In most cases, 

this can be done by using a library of models or using domain knowledge. 
(3) The MBR system can generate (induce) a complete probabilistic model by fitting 

a model consistent with the properties specified by the probabilistic network. The 

induced model may contain new hidden variables. 
(4) The probabilistic model is used to define an adaptive notion of relevance that 

is based on both the data and the desired task. This is achieved by the use of 
an adaptive distance (similarity) metric on the domain. The induced distance is 
adaptive in the sense it is learned from data and gets modified when new data items 

are added. 
(5) In some cases the system induces an explicit transformation (see below) on the data 

(which we call the MBR transform). Thus, each data instance is transformed to a 
new instance that may or may not include new attributes (e.g., hidden variables). 
A data structure that supports efficient retrieval of relevant instances can then be 

mechanically derived in the transformed space. 
(6) When a query is posed. the MBR system retrieves the relevant context for the query; 

i.e.. those instances from the database that are most similar. A local model is then 
constructed over the set of relevant instances. Relevancy is implicitly defined by 
the learned distance metric, which in turn is induced from the probabilistic model. 
MBR performs loc~zl learrring on this relatively small set of relevant instances, 
thereby producing a local model which is used to answer the specific query. Local 
modeling can be performed using regression. local decision trees. neural networks 
or other learning methods. 

The first and the last components are common to all MBR systems that we are familiar 
with. Steps (2)-(5) (i.e., the use of graphical probabilistic models to define relevant context 
for answering queries) are unique to our proposed framework and generalize the original 

proposal by 1421. The framework introduced above is aimed at the goal of developing a set 
of automated procedures that use both standard (“off the shelf”) and novel components to 
build flexible MBR systems. We can use a variety of existing software systems to specify 

probabilistic graphical models [40]. Such packages often provide effective procedures to 
learn the parameters of the model. The system then needs to code the transformation on 
the space induced by the model. In many cases this transformation is straightforward (see 
below). However, in general formalizing and automating this transformation (from model 
to retrieving relevant context) is still an open research question. Finally, given a query 
the system can use local learning procedures (such as local decision trees or regression) 
to predict the appropriate action in the relevant context. This component can be easily 
automated. 

The MBR paradigm is more general than the above probabilistic framework. However, 
this overview is broad enough to capture and extend many existing algorithms (e.g., 14, 
14,27,42,48]). In addition, this framework clarifies and analyzes the advantages of the 
similarity functions originally proposed in [42], and suggests new variants that do not exist 
in the literature. 



3. Value difference metrics 

To motivate our framework, we will first define and give an example of an adaptive 

distance function. We begin by considering a traditional classification problem. Assume 

we are given N examples where each example X = (XI. . x0) is a point in some 

d-dimensional space. Each dimension corresponds to some natural feature in the domain, 

and each point X has a class label C. The standard classification problem is to predict the 

class of a new, previously unseen point. 

We can perform classification using a standard nearest-neighbor method such as 

k-nearest method (k-NN). but we will use an adaptive distance between instances called 

the modified value difference metric (MVDM). Recall that a standard R-NN approach uses 

the following steps to produce the class of a previously unseen instance X. 

(1) Given a query X the algorithm retrieves one or a set of nearest neighbors of 

X (using the adaptive distance function defined on the domain). For each such 

neighbor Xi we obtain the class label C;. 

(2) Given the set of class labels obtained from the previous step we vote to obtain the 

final output: the predicted class label of X. 

In general, most systems rely on a weighted vote to obtain the final output; however, 

in our analysis and experiments we will use either a I-NN (single nearest neighbor) or a 

simple majority vote on K-neighbors (K-NN). 

MVDM defines the value difference between two values ~11 and u2 of a given feature to 

be: 

k 

S(Ul, 3) = c $ - 2 . 
i=l I ! 

where k is the number of classes, uti is the number of times IJJ occurred in instances of 

class C; and Vi is the number of times t~1 occurred for all classes. Thus the ratio ~1, / VI 

is the empirically observed probability of class Ci given that the feature has value UI, 

P(C, I Ul). 

Intuitively, MVDM defines the distance between two examples as the sum of the value 

differences across all features. It suggests that the distance between two examples should 

be related to the effect each feature has on the action taken (in this case classification). 

Value-difference metrics (VDM) were introduced by Stanfill and Waltz [42]. MVDM is a 

modified variant of VDM, introduced by Cost and Salzberg [14] and incorporated in the 

MBR system PEBLS. 

VDM and MVDM operate on databases of examples with discrete attributes (symbolic 

attributes or discretized real-valued features), i.e., each database entry contains a set of 

discrete values and possible other information such as a class label. Cost and Salzberg [ 141 

demonstrated that PEBLS using MVDM performs well relative to several other learning 

algorithms on a number of practical problems (see also [48] for a related comparison). 
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4. The MBR transform 

In this section we present a probabilistic framework for MBR. We show a case study 
where the definition of a distance metric such as MVDM follows naturally from a simple 
probabilistic model. We start with a simple example of a binary classification problem. 

Given an instance (x1 , . , .r,) we want to classify it as being a member of class CI or C,. 
In this case, the MVDM computation can be restated as performing a simple transform 
on the space of the attributes. Essentially, the transformation converts each instance 
(x1, _, x,~) to an instance (P(C1 1 XI). , P(Cl 1 x,,)), and stores the new instance in the 

database. Given a new instance (~1, . . . , J,,), we convert it to (P(CI / ~1). . , P(CI / ?;!)) 
and then simply seek the nearest neighbor in this transformed space. The reader can easily 
verify that this transformation faithfully models the original MVDM computation. This 
follows from the observation that the distance between x; and J, for any two instances 

(x1.. ,x,,) and (\‘I,. , y,,) is 

IP(C, I Xi) - P(CI I .&I/ + pYC2 I Xi) - P(C2 I .&)l 

= qm3 14) - P(CI I Pi>l). 

In general, we are given a database of tuples (Xj}. Each tuple X,/ = (XI, . . , x,~, C), 
where the xi’s are random variables that correspond to input features, and C corresponds 

to the class label. The transformation implied by the MVDM technique is transforming an 
event x; = a; to a discrete probability distribution (P(C = Cl I xi = ai), . . , P(C = Cx / 
.x-i = ai)). This is illustrated Fig. 1. This is only one of many possible transformations. We 

could transform x; = a; to (log( P(C = Cl I Xi = a;)), . , log(P(C = Ck I X; = ai))) (see 
the following sections) or similar expressions. 

( 651, . . ) u(j) + (P(C = C&21), . > P(C = Cl J&i)) 

Fig. 1. The MBR transform for binary classification associated with MVDM 

In general, we transform a d-dimensional input space to a kd-dimensional space where 
k is the number of classes. As seen above, (k - 1)d dimensions are sufficient. The 

transformation of (symbolic) values into probability distributions will be referred to as 
the Probabilistic MBR transform or MBR transform. 

4.1. A probabilistic framework for the MBR transform 

The transformations above are clearly induced by a very simple probabilistic model that 
assumes independence between the attributes. We want the user to have a general, flexible 
facility to specify such transformations. In our framework, the MBR transformation is 
induced by a simple probabilistic model that can be specified graphically using a two- 
layer causal tree. In particular, to specify the transformation done by MVDM, we use a 
model that assumes independence of the joint probability distribution on all the variables 
(including the class). In other words: 

P(Xl . .X(/, C) = I-I P(Xj ) C)P(C). 



Y 

-‘-:f\ 
X0 Xl x2 x3 xP x5 X6 

Fig. 2. The class variable Y at the root of the causal network is dependent on all of the variables X, represented by 

the leaf nodes. Each leaf node Xi is class conditionally independent of any other variable Xi given the class Y, 

Each edge of the tree is therefore associated with a matrix of conditional probabilities of the variable Xi given 

the clas\ Y. 

The derivation of the transformation is given in Section 5.2. MBR then uses this model 
as the basis for the transformation. The model is illustrated in Fig. 2. The variables in the 

figure will normally be defined by a domain expert; however, they could be augmented 

by automatically constructed features or combinations of features. The values P(C ( xi) 
correspond to the h-messages in probabilistic networks. h(xi) = P(xi / C) and can be 
computed directly from the network [33]. 

As mentioned in the introduction, this paper does not address the automatic derivation of 

the transformation from the model. We primarily want to motivate the practical usefulness 

of probabilistic MBR methods, analyze their performance and suggest the possibility of 

automating the transform. The MBR transform has several desirable theoretical properties, 
as discussed in later sections. 

5. Generalizing MVDM using probabilistic MBR 

The approach outlined above generalizes to more complex graphical probabilistic 

models such as in 1401 which may include hidden variables. Since this paper on the topic 
of probabilistic MBR focuses on the analysis of VDM approaches (in the probabilistic 

framework), we do not provide a detailed analysis of a general probabilistic MBR, which 
would be discussed in a follow-up paper. In general, probabilistic graphical models provide 

support for the following capabilities: 
. A framework for specifying the probabilistic dependencies that we want to capture 

in the data. This is typically coded by the structure of the probabilistic network. This 
structure indicates which parameters (conditional probabilities) must be learned from 

data. The structure is specified by the modeler, and may include hidden variables. 
There are also a number of approaches that learn the structure from data. 

. A computational framework for combining these conditional probabilities using 

algorithms that take advantage of the graphical properties of the model to simplify 

(speed-up) computation. 
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x3 x4 x5 x6 

Fig. 3. Tree model. 

However, there are two problems that we might encounter in practical learning tasks: 
l The structure of the prespecified model may be incorrect (this is most problematic 

aspect of the approach). 
l The computation required to fuse the probabilities to answer a particular query in a 

complex model may be computationally infeasible. 
Our approach advocates using probabilistic models only for recording the probabilistic 
dependencies among variables as specified by the model. However, we then perform 

prediction where we use the information computed by the network as a set of constructed 

features (probabilistic features). Thus, we may use other learning methods (in this 
case MBR) to combine/fuse the probabilistic information previously recorded by the 

network. This allows us in some cases to specify a simplified model of the data that 

facilitates an efficient inference of probabilistic quantities, and let the MBR procedures 
“correct” the simplified assumptions made. It is important to observe that matching of the 

query to instances in the database now takes place in a space of probability distributions. 
We illustrate the intuition behind the general framework using the example of a model 

in the form of a causal tree defined on seven binary random variables (see Fig. 3). This 
probabilistic model implies that the joint probability distribution on seven variables has a 

simple form. Specifically, it can be factored as a product: 

p(xO, XI 9 x23 x.1, x4> x5, x6) 

The reader is referred to [33] for detailed information on the computational and statistical 
advantages of this factorization. Let us now assume we have a large database D of tuples 

of the form (X0, XI, X2, X3, X4, X5, X6). For instance, a tuple (x0, xl, X2, X3, X4, X5, X6) may 
define the attributes associated with a given biological cell. Let C be a binary random 
variable that corresponds to a medical classification (e.g., malignant). 



Let us assume that the joint probability of data given C = Ct is a tree like the one shown 
in Fig. 3. We will refer to the model as Tt . Similarly, we assume that the joint probability 
of the data D given C = C2 is also a tree, T2. Tl and T2 share structure but not necessarily 
the conditional probabilities associated with the corresponding edges of the trees. Assume 
we are now given a query in the form of partial tuple (xo. ~‘1, x2, x3, x3, XS, x6) (which is 
not stored in the database). We are asked to predict the distribution of the binary class 
variable C, a standard classification task. In the framework of probabilistic networks this 
problem can be handled directly by assuming the new tuple is an evidence E: 

The probabilistic network inference algorithm will then predict the probability distribution 
of variable X0 given E using the inference algorithm for general networks outlined in [331. 
The algorithm will perform optimally (minimizing Bayes risk) if the model is correct. 
However, in practice the model may not be correct. Thus, the model will not provide 
adequate performance on this prediction task even if an infinite amount of data is available. 
In statistical terms, we lack consistency (i.e.. convergence to optimal performance as the 
amount of data is increased). 

Using the probabilistic MBR transform approach, we can transform the query as shown 
below: 

+ (mlJo)> P(x2 l-w)> P(K3 I XI). P(x4 I XI). P(xs I x2), Pb6 I x2), Wo)). 

By y(x; / X,j) here we mean a vector containing two numbers: conditional probability of ,xi 

given xj in classes Ct and C2. Thus, the dimension of the resulting transformed tuple space 
is 14. We can now perform the same transformation on every tuple of the database, and 
match (using K-NN) the transformed query to the transformed database. The intuition here 
is similar to the one that motivated MVDM. However rather than storing the dependency 
of a given attribute xi on the class directly, we instead store the dependency on another 

attribute, the parent of xJ in the tree. In probabilistic network terminology we assume the 
parent “separates” the class variable from variable xi and therefore recording the parent- 
child dependencies might be sufficient. 

As mentioned above, if the model is indeed correct we would not benefit from the 

MBR transform. At the same time if we do these transformations carefully we do not 
cause any “damage” in the sense of maintaining the ability to learn a correct classification. 
However, it is usually impossible to specify the correct structure of a probabilistic model 

for a complex domain. 
Our framework also suggests a methodology to incorporate “user provided advice” 

into memory-based reasoning. In other words, the modeler or domain expert initially 
might specify the structure of a particular probabilistic model in the form of a set of 
rules. Consider a rule where a conjunction of binary events A 1, , A,, implies the binary 
event C. This rule might not be valid in practice. In a probabilistic framework we create a 

network with binary random variables A 1, . , A,, and C in the hope of recording the actual 
probabilistic dependency of C on A 1. . . A,, However, this process is often prohibitive 
since the conditional probability table has an exponential (in n) number of entries. There 
are many solutions within the probabilistic networks framework; we primarily suggest 



another methodology. Using an MVDM approach we assume a causal network structure 
(as in Fig. 3 above), and then “correct” the invalid independence assumptions made 

using MBR. 
We will show in subsequent sections that the MBR approach expands both the 

expressiveness and the learning capacity of the specified model. That is, we can learn to 
perform more accurately on a more general class of problems then the original probabilistic 
model would allow us to do. In particular, we report on an experimental and analytical 

comparison between a particular MBR system called PEBLS [14] and a widely-used 
probabilistic method known as the naive Bayesian classifier, which is specified by the 
simple probabilistic network in Fig. 2. We will refer to the naive Bayes classifier as NB 

throughout the paper. 
We would like to emphasize that we are not advocating specific learned metrics and 

their induced MBR transforms. Here we considered one such transform (i.e., MVDM) to 
illustrate the advantage of the technique. One could just as easily use tools such as mutual 
information or logarithms of probabilities (see next section) to re-express the values, and 
in some cases other metrics might have theoretically better properties. In most cases the 

usefulness of a particular approach needs to be determined empirically. 
As an example of another transform, consider a set of points in two-dimensional discrete 

space that form K distinct clusters. One natural transformation is to convert each instance 

to a pair. where the first component is the mean vector of the cluster containing the 
instance, and the second value is the distance in standard deviations from the mean. The 
model implicit in this transformation is a probabilistic model of a set of points normally 
distributed around a small number of centroids, which can be easily specified by a Bayes 

network. Our framework captures this and other natural distributions such as statistical 
mixtures 1441, probabilistic hierarchies and complex probabilistic models [33]. and models 
that include hidden variables [ 251. 

The model itself will vary depending on the goals of the system; in fact, the same 
database can be used with different models to produce different MBR systems that solve 
different problems. In each case the model will induce a different transformation. Thus we 

have an adaptive notion of relevancy. A feature may be relevant in the context of one action 

and irrelevant in another. Our approach makes it possible to define this dynamically on the 
same database. 

5.1. MBR trun@rm for static dutahases 

In previous papers on MBR the transformation is typically implicit. Thus, the model 

is used to induce a particular distance, which is subsequently used to retrieve relevant 
instances. Retrieval is done by linear sequential search or a simple parallel implementation 
of such search. When the MBR transform is relatively static (e.g., a fixed classification 

problem on a fixed database), it makes sense to actually apply the transformation to each of 
the instances and store the transformed space rather than the original database. This explicit 
application of the MBR transform may lead to substantial improvements in computational 
efficiency when using MBR for retrieving relevant instances. The advantage of performing 
the transformation is that if we store the transformed instances (instead of the original 
ones), we can use computational geometry techniques to perform fast approximate retrieval 



of nearest neighbors in real-valued spaces, in time which is logarithmic in the number 

of instances. There are numerous data structures that have been developed to search a 
database of instances efficiently when a query is presented, mostly based on the k-d 

tree framework [7]. These techniques allow one to find relevant instances in logarithmic 

expected time (logarithmic in the size of the transformed database). Note, that it may be 

difficult to define efficient data structures on the original space when the attributes are 
symbolic. Since the transform is highly sensitive to data, in the case of highly dynamic 
databases we have to devise incremental procedures to maintain an accurate partitioning 

into regions. This is algorithmically challenging, and in the case of dynamic databases it 
usually makes sense to keep the data in the original form and use an efficient linear time 

distance computation to decide on a relevant context. 

5.2. Theoretical motivationfbr the MBR transftirm 

In this section we make two simple technical observations that motivate the MBR 

transform in the context of MVDM family of metrics defined above. For simplicity, we 
assume a classification problem where the examples are labelled by two classes A and B. 

and each example has two features, where the features are class conditionally independent. 
The analysis trivially extends to d-dimensional vectors. Thus, for any instance X = (xl. x2) 

we have 

P(A I Xl = P(XI I A)P(x2 I AlP(A) 

Consequently, the discrimination function (the decision boundary between the two classes) 
is defined by: 

log(P(A I WIf’(B I XI) 

=logP(xl(A)-logP(xt (B)+logP(x;?(A)-logP(x~IB)+constant. 

In other words, the discrimination function is linear in the log probabilities. That is, points 

above and below the linear discriminant are in class A and B, respectively. This is a 
well known fact in pattern recognition; however, it has interesting implications for MBR 
transforms. In particular, consider the following MBR transform: 

(XI % x2) + (lo&l I A), lo&l 1 B), lo&z I A), lo&z I B)), 

we now have to learn a simple linear classifier. It is known that the standard k-nearest 

neighbor algorithm achieves a very rapid convergence rate on linearly separable concept 
classes. This analysis can be generalized to more complex probabilistic networks, which 
do not make such strong independence assumptions. The intuition is that any probability 
distribution expressed by a Bayes network can be expressed as a product of terms involving 
conditional probabilities. Therefore, the discrimination function becomes a linear function 
of the logs of these terms, which makes it easy to learn by nearest neighbor methods. 

Additional motivation is provided by the following analysis. Consider two instances 
X and Y, where each is a two-dimensional binary vector. We observe that certain MBR 
transforms (similar to MVDM) have a desirable feature, namely that instances that are 
close to each other tend to be classified similarly. 
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Assuming a uniform distribution on X and Y and independence we get: 

P(A I X)/P(A I Y) = P(.xI I AlP(x2 I A)If’(.n I A)P(L’I I A). 

Thus. 

/ hdP(A I X)IP(A I Y))l 

= 1 log P(XI I A) + log P(x2 I A) - log P(YI I A) - log PC1’2 I A)1 

= IClog P(.KI I A) - log P(yl I A)) + (log PO2 I A) - log P(v2 I A))/. 

Finally we obtain: 

) log P(A I X)If’(A I Y)l 

< ) log P(xl I A) - log P(y) I A)1 + ) logP(xz I A) - log P(4.2 I A$ 

Therefore, as the right-hand side of the equation gets small, so does the left-hand side. 
However, the right-hand side corresponds to the distance between instances after the MBR 

transform. Therefore, as the distance between X and Y gets small, the probability of a 
given class for these two points will become similar. Thus, transforming xi to log P(Xi I A) 
behaves “smoothly” in that examples that are near to each other will tend to be classified 

the same. 

6. The naive Bayes classifier (NB) 

Note that the Bayes network above corresponds exactly to a simple (naive) Bayesian 

classifier (NB) that has been used in many studies in the machine learning literature. This 

classifier, for each class Ci and feature value x,;, estimates P(xj ( Ci) from the training 
data. A new point is classified into Ci if P(C;) nj P(xj ) C;) is maximal. This classifier 

has been evaluated in many machine learning papers (e.g., [ 131) and many variations on the 

Bayesian approach have been considered in a wide range of domains. The classic work on 
Bayesian classifiers goes back many years [5,6,10,11,16,22]. Some recent results on naive 

Bayes classifiers in the machine learning community can be found in [26,34]. 
It is important to note that PEBLS computes the same statistics as the naive Bayes 

classifier. Thus, during training the running time of both methods is the same. However, 
while Bayes summarizes these statistics in simple rules, PEBLS uses them as part of 
an MBR classifier. In later sections we show that the use of MBR in conjunction with 
the probabilistic mode1 of the naive Bayes classifier model expands the representational 
capabilities of the system and provides better accuracy in empirical studies. 

7. Empirical studies on benchmark databases 

In this section, we describe a number of experiments designed to better understand 
the relative performance characteristics of a naive Bayes classifier specified by a two- 
level causal net and PEBLS. We shall see that since the model is inaccurate, PEBLS 
can outperform it on these simple classification tasks, although PEBLS uses a somewhat 
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Table I 
Results on eight UC1 databases. The highest accuracy 
for each database appears in italics 

NB PEBLS NN 

TicTacToe 

Letter 

Soybean 

Zoology 

Iris 

Promoter 

WI-breast 

Mushroom 

69.4 Y4.4 x1.7 

14.6 OS.7 xx.5 

81.4 Y3.2 91.2 

89.1 95.0 06.0 

90.7 95.3 92.0 

01.5 90.6 8O.S 

Y6.7 96.7 95.6 

Y9.7 100.0 I 00.0 

inaccurate transformation. In the Section 8 we shall see that on some tasks an incorrectly 
specified model can be “fatal” for an MBR method. For completeness, we provide 
comparisons to nearest-neighbor (k-NN) using the overlap metric (which counts the 

number of feature value mismatches between two examples). To get an initial sense 
of relative performance, we selected eight datasets from the University of California at 

Irvine’s Repository of Machine Learning databases [29]. For the experiments below, all 

methods treated the feature values as symbols, even if the values were numbers. In other 

words, if a feature had values 1, 2, and 3, we would treat those exactly the same as if 
they were A, B, and C. Continuous features were discretized by dividing them into ten 

equal intervals. Solving this type of problem is analogous to predicting the behavior of an 
electronic circuit based on the color of the resistors and the physical size of the capacitors: 

the system has to learn how the symbolic values correspond to other phenomena. 
In the case of the letter recognition and mushroom databases, which are both relatively 

large, we trained the algorithms on 90% of the examples, and tested on the remaining 10%. 
This process was repeated on ten randomly chosen training sets. The values contained in 
Table 1 represent the average of these ten trials. All other tests were conducted using the 
leave-one-out strategy (i.e., where each instance is tested after Hurst training on all other 

instances in the dataset). Note that for the IRIS database, we first converted the data to 

symbolic attributes and then used the MBR transform. In principle, one can use a traditional 
I -NN on this database to obtain comparable (to PEBLS) accuracy. 

While the performance of PEBLS on these benchmarks is quite good, the nature of the 

concept class is not perfectly understood for these data sets (and, in fact. some of these 
datasets are known to be quite easy to classify 1201). Therefore, one cannot draw any strong 
conclusions from these results. We primarily wanted to demonstrate that the MVDM family 
of algorithms can be effective for some discretized versions of standard benchmarks. In 
[39,48] MVDM is used to deliver a relatively high accuracy on protein secondary structure 
prediction. That is, it matches or exceeds the accuracy of carefully tuned neural networks 
on relatively sparse training data, which is rather surprising. We now turn to artificial data 
to better gauge the specific conditions under which one method outperforms another. 



8. Tests on artificial data 

In this section we describe tests that compare the performance of NB, PEBLS, and 
NN when applied to artificial datasets. This section illuminates some clear strengths and 

weaknesses of simple MBR methods. In particular we devise artificial concept classes 

where the “probabilistic advice” given to a memory-based reasoner is so incorrect that it 
cannot recover and perform a correct classification even if all the instances in the domain 

are given! Artificially defined datasets are of interest because they allow one to control 

the nature and distribution of examples, and are thus more amenable to formal analysis. 
Here we consider a number of basic functional distributions for 2-dimensional data on a 

finite grid. We show relative learning curves for PEBLS and NB. Experiments on additional 

artificial data (generated by a Markov process) are described in Rachlin et al. [37], which 

also reports on artificially generated data in higher dimensional spaces. 

Our first set of tests considered 10000 points on an evenly spaced 100 x 100 grid on 
the unit square. For simplicity, the examples have just two class labels, A and B. Some of 

the class distributions that we examined are shown in Fig. 4. Note that our classification 

methods treat grid coordinates as arbitrary symbols in a feature space, and thus have no 
knowledge of the underlying Euclidean space. 

In each experiment, we trained the algorithms on some fixed percentage of the points, 

and then tested on cl11 grid points. Thus the tests measured generalization performance 
on the entire population. All training points were randomly selected from the uniform 

distribution. Fig. 5 shows the relative performances of NB, PEBLS, and NN on these class 

distributions. In all cases, PEBLS did as well as or better than NB. It is interesting to note 
that in the case when the two classes are separated by the function J = x2, NB does not 

converge to 100% accuracy even when trained on all possible examples. (See Section 9 for 
more details and an explanation of this phenomenon.) 

(4 @I 

p?pJ 
y=x y=x2 

“X” Distribution “Cross” Distribution 

Fig. 1. Class distributmns with examples uniformly distributed on a 2D lattice 
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PEBLS and NB show some unusual behavior when applied to the “cross’‘-distribution. 
While NB’s accuracy remains at 50% regardless of the training set size, PEBLS at first 

begins to improve, but then eventually drops off, and when all instances have been seen, 
the performance returns to the 50% level. This occurs because for a specific value of .Y 
(or x), the number of points in Class A and Class B is about the same. As a result, the 

.I- and y values considered independently provide no hint as to the relative probability of 
each class. Thus, NB can only guess the correct class. However, PEBLS can take advantage 

of the fact that for any point, it will assign a distance of zero to itself. When the sample size 

is small, other points will be assigned non-zero distances due to imperfect sampling. Thus, 
as the training set size begins to increase, so does PEBLS’ accuracy. However, the MVDM 

similarity function employed by PEBLS will eventually assign a zero distance between all 

points in the space, once every point in this particular class distribution is included in the 
training set. When this occurs, PEBLS will also have to guess the correct classification. This 

explains why PEBLS’ accuracy begins to degrade as the training set size increases beyond 

a certain point. Fig. 5 shows that NN using the overlap metric often produces poor results, 
although its accuracy is proportional to the training set size. and thus increases linearly. 

9. Naive Bayes classifier and linearly separable concepts 

In this section we present some theoretical analyses of the performance of NB versus 
PEBLS. These results apply to learning algorithms using MVDM. We focus here on results 
that provide substantial intuition for the relative strengths and weaknesses of PEBLS 
(that computes similarity using MVDM) versus naive Bayes. Again, this comparison is 

interesting since MVDM employs the same independence assumptions as naive Bayes, 

and the computational requirements during learning are identical. 

In Section 8, we noted that under certain conditions, Bayes did not converge to 100% 
accuracy even when the classifier was trained on the entire space of examples. On the one 
hand, this is not very surprising because we are making an independence assumption that is 

known to be false. However, the precise reasons may not be clear, especially since PEBLS 
was able to obtain 100% despite making the same assumption. In this section, we analyze 

the ability of NB to learn concept classes in 2Z2 when the discriminant function is of the 
form J = ax. It is easy to show that if the separator is of the form J = x on the rectangle 

[O.O] x [ 1. 11 (i.e., the separator is a diagonal from the origin to the point 11. l]), then 
NB does converge to 100% accuracy, which is somewhat counter-intuitive at first glance. 

because the features are dependent on each other. However, with a little analysis, one can 
prove that for many discriminant functions on the unit square (including _Y = ux when 

CI # I ) NB does not converge to 100% accuracy. To illustrate this we consider a lined? 

.sepumhle concept class where the discriminating function is 4‘ = ux. We will show that 
for this function, NB will not converge to 100% accuracy when a # 1. 

Assume that all points in the unit square above J = ux are in class A, and all points 
below are in class I?. Without loss of generality, assume that a 3 I, Note that for a point to 
be classified by NB as class A, we must have the condition that: 

P(A 1 x,x) > P(B 1 x. y). (2) 



Making some common independence assumptions, we can write: 

P(A I x, Y) = 
f’(A)f’(x I A)P(y I A) 

P(x. y) 

Using Bayes’ rule for P(x 1 A) and P(y 1 A), we can rewrite Eq. (3) as: 

f’(A Ix, J) = 
f’(A I x)P(-x)P(A I YIP(Y) 

P(A)P(x, y) 

(3) 

Performing the same calculation for P(B / x, y) and applying Eq. (2) yields a new 
expression for when naive Bayes will classify a point as A: 

P(A I x)f’(A I VI P(B I x)P(B I Y) 
f’(A) ’ P(B) . 

For the class separator y = ux in the range (0,O). . . ( 1, 1) we have: 

P(A) = 1120, P(B) = 1 - 1/2a. 

P(A I x) = 1 -U.K. P(A I y) = y/m. 

P(B I x) = c(.*‘. P(B I y) = 1 - y/u. 

Substituting into Eq. (4) tells us that an example will be classified as A when 

u2x 
?‘> 

2a+2ax-2a2x- I’ 
(5) 

For u = 1, this gives just y > x; i.e., the Bayesian classifier will converge to 100% accuracy 
(which is consistent with the experimental results in Section 8). However, if y = 3x (for 
example), the condition for being classified as A is 

9X 
4” 5-12x’ 

Wrongly Classified as B 

True Class Boundary - 
Bayes Classification Boundary - - - 

Fig. 6. The failure of naive Bayes for the separator !‘ = 3x. 
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This function is plotted in Fig. 6 along with the original function v = 3x. It shows clearly 
where the Bayesian classifier will make mistakes. 

Piecewise integration over the difference between this function and the function _v = 3x 

allows us to predict a convergence for NB of 97.1% in the limit (when all examples in the 
lattice have been seen). This value has been verified experimentally. A similar analysis for 
the function 4’ = x’ predicts an error rate of 4.6%, which is exactly what was observed 

earlier in Section 8. 

10. Theoretical analysis 

In this section we provide analytical analysis that focuses on the increased representation 
power obtained by the MBR transform. In particular in Section 10.2 we show that the MBR 
transform obtained using MVDM allows us to learn a larger family of functions than is 
learnable by naive Bayes. 

10. I. MBR and irrelevant or noisy attributes 

Before we address representation and learnability issues, we first provide a few 
observations on the utility of MBR in the context of irrelevant or noisy attributes (features). 
The reader can observe from the discussion in previous sections that MBR performs a 
process similar (but not identical) to attribute weighting, which may be very useful for 
symbolic as well as real-valued attributes. In particular it can be helpful for coping with 
irrelevant attributes. Consider for instance the case where the class B in a two-dimensional 
N x N grid is defined by points below the separating plane y = N/2. In this case the .Y 
attribute is clearly irrelevant. If the examples are sampled from the uniform distribution, 

then after seeing kN examples (for some small constant k) each X and Y coordinate in the 
grid will have been observed approximately k times (with high probability). It is clear that 
P( B / x) converges rapidly to l/2 (for all x). P(B 1 .v) = 1 for all examples below the line 
and P( B I _y) = 0 otherwise. Given a new point (x(1. JQ) in class B, which has not been 
seen before, the MBR transform maps it to: 

(P(B I x01. f’(B I YO)) --f (W I x01. 1). 

In other words, the transformation-function converges to a function that converts all 
instances above the line to (l/2, O), and instances below line to (l/2, 1). Stronger results 
than this can be derived. For example, we can show good performance, in the PAC- 
learnability sense [46], after seeing a small number of examples. Let e be the probability of 
error of the classifier. Then it is not difficult to show that after seeing C/s(ln l/S) examples 
(where C is some constant), P(e z E) < 1 - 6. This argument trivially holds for the case 
of one relevant attribute and D - 1 irrelevant attributes on an ND grid. The number of 
examples necessary to achieve PAC-learnability in this case is also C/(E In 1 /A), where the 
constant C depends linearly on D. In contrast, the standard NN algorithm will require N n 
examples. In general, the convergence rate is likely to be even better for nearest neighbor 
voting procedures such as k-NN. 

A similar argument can be made for attributes that include uniformly distributed 
Gaussian noise. This informal discussion suggests that the MBR transform may be helpful 



for coping with irrelevant or noisy attributes in symbolic as well as discretized real-valued 

spaces. We note, that in general, the worst case convergence of nearest-neighbor procedures 
including MBR in LI dimensions is exponentially slow. However, as pointed out earlier, 

when the domain model is accurate the learning rate improves dramatically. 

10.2. MVDM and leaming,fimctions 

in Section 8, we saw concept classes that both the naive Bayes classifier and PEBLS 
had difficulty learning. However, given the poor performance of the naive Bayes classifier 

for _Y = ax, we would like to see if PEBLS has similar difficulty learning this family of 
concept classes. This is the question of statistical consistency, namely at the limit (or in 
finite cases when we see all the examples) we want our system to produce only correct 
classifications. As we have seen before, it is not obvious that MVDM classifiers achieve 

100% classification accuracy even when it sees all the examples in the domain; in fact 
it often cannot. Somewhat surprisingly, we can show that PEBLS can actually learn any 

concept on Z” provided the classes are separated by a function. We recall again that 
our algorithms treat all inputs as arbitrary symbols in a feature space, and thus have no 
knowledge of the underlying Euclidean space. Thus, the standard NN convergence proofs 
are not immediately applicable to this case. 

The next theorem addresses this issue and provides a condition that guarantees the 
consistency of MVDM at the limit (on finite domains). Note that our theorems are not 
learnability theorems, but rather address representational issues. We note, that by making 

some standard smoothness assumptions on the discriminant function, one can extend the 
consistency result to prove convergence, that is. learnability at the limit; this type of 

analysis is beyond the scope of this paper. 

Theorem 1. Let G he ajnite N x N grid. Let A he a concept that is u subset of G, and 

assume A is separatedfrom B by a jimction ,f. ,f’ is a function from 1. . N to 1, . N. 

Let A be the region above thejiinction ,f; i.e., (x, y) is in A ifl f (x) 3 y and (x, y) is in 
B $ f (x) K y. Then the MVDM clussi$er will achieve 10070 accuracy on A und B at the 

limit. 

Proof. The proof is by contradiction. Assume (XI. ~1) is a point in A that PEBLS classifies 
incorrectly. Since the distance from (xl, ~1) to itself is zero, this implies there is a point 

(x~,J$ in B whose distance to (XI, ~1) is also zero. From the definition of MVDM, this 
means that 

Since P(A ) x;) = ,f (x;), we have f’(x2) = .f’(,ul). That is, 

?‘2 > .f (J-2) = f‘(x1) 3x1. 

Therefore, ~2 > ~1, Let A1 be the set of all x such that ,f(x) 3 ~1. Similarly, let A2 be the 
set of all x such that f’(x) > 9. If x is in AZ, ,f (x) 3 ~2. Then since 4‘2 > ~1, ,f (x) > ~1 
and therefore x is in AL. Thus AT is a subset of A 1. However, P( A 1 yl ) is the size of A 1 



and P(A ( 39) is the size of AZ; therefore, since P(A 1 x1) = P(A 1 x2), Al and A2 are 
the same size. So we have two sets in Z’, one of which is contained in the other, and the 
sizes of which are equal; thus the sets must be equal. However, x1 is a member of A 1, but 
it cannot be a member of A2 because ~1 > f’(,~l) > ~1. q 

This c~onsistmcg theorem basically shows that at the limit, MVDM algorithms can learn 

any concept in 22’ separated by a function. A more general theorem easily follows for 
concept classes on multidimensional grids. However. in multiple dimensions it is difficult 

to derive equally general conditions on achieving consistency and the technical details are 

complex. For instance, if the decision boundary is given by a function of d - 1 dimensions 
in a d-dimensional space, MVDM will not necessarily attain 100% accuracy. (Simply 
extend the cross-concept discussed above to three dimensions). However, it is easy to see 
that MVDM can learn any linearly separable concept in multiple dimensions. 

The goal above was merely to establish conditions that will guarantee that MVDM 
classifiers achieve consistency, i.e., can learn accurately a much more general family of 
classification tasks than the original model used to induce the transformation would allow 
by itself. Clearly, a classifier rarely sees every possible example. Nevertheless, this is a 
useful observation in view of the limitations of a naive Bayes classifier (NB), which cannot 
even learn linearly separable concepts when all the examples are given. 

A natural question to ask is what is the convergence rate of MVDM in the limit for 
various other classes of concepts? We already pointed out that MVDM speeds up the finite 
sample convergence rate when there are many irrelevant attributes. However, one can show 
that the worst case behavior of MVDM is similar to standard 1 -NN algorithms, which can 
be exponentially slow even when the examples are sampled using a uniform distribution. 

10.3. Nuive Buys leurning implies MVDM lrurning 

We next decided to investigate whether there are any concepts for which the Bayesian 
classifier obtains 100% accuracy while PEBLS does not. Again, to simplify the discussion, 
let us consider the situation at the limit; that is. when all possible examples of the concept 
have been seen. 

It is possible to show that for any finite domain, PEBLS will &ways achieve 100% 
accuracy if naive Bayes is known achieve to 100% accuracy. The proof is straightforward 
and is given below. 

Theorem 2. Gil’en u jinite domain jtir which the Bqesiun cla.ssi$cution rule uchie\y.s 

100% accuracy at the limit, the PEBLS program using MVDM will also achieve 100% 
U~Y~U~XK~ at the limit. 

Proof. In the limit, a classifier will see every possible example in a domain. Since we 

know that NB classifies every point correctly. we know that for any point pl = (xl. ~1) in 
class A, 

P(A I x~)f’(A IN) 
> 

P(B I XI)P(B 1.~1) 

P(A) P(B) 
This must be true in order for NB to classify the point correctly as A. 



NOW consider how PEBLS will classify the point. Since it has seen the point before, it 
will always find the point itself as its own nearest neighbor. since the distance from a point 

to itself is always 0 using MVDM. Thus it will classify it correctly unless there is another 
point p2 = (x2, ~2) that is labelled B that has distance 0 from ~1. As explained earlier, the 
distance between pl and p2 as computed by the MVDM is the following: 

IP(A 1x1)--P(A Ixz)/+~P(BI~I)-P(BI~~)) 

+ (PO I ?‘I) - P(A I .2)j + IP(B I YI) - f’(B 1.~2)). 

Assuming that such a point exists, then this distance is zero. Therefore all four terms must 

be zero, and thus P(A (XI) = P(A 1 x2), P(B 1 XI) = P(B I x2), etc. Now, since p2 is in 
class B, then 

P(A I .Q)P(A I .vd P(B I x2)P(B 1.~2) 
> 

f’(A) f’(B) 

because the Bayesian classifier classifies it correctly. But since P(A I XI) = P(A 1x2) etc., 
we can substitute XI and ~1 for x2 and ~2 in this equation, which gives us a contradiction. 
Therefore no point in class B will have distance 0 from any point in class A. q 

11. Summary of related research 

The issues addressed in this paper (e.g., probabilistic models of relevance or similarity) 
are quite broad and have been addressed in psychology, statistics, information retrieval, AI, 

pattern recognition, computer vision and natural language processing. Inducing distance 

metrics and judging relevance using complex probabilistic models and data is also a very 
basic research topic. The reader is referred to [ 11 for a broad overview of related research on 
this topic. Thus, it is impossible to enumerate all possible references to potentially relevant 
papers. Instead, we mention only the work most relevant to our particular computational 
framework. 

In a text-to-speech translation system, how similar is one data instance (e.g., DEAR) to 

another (e.g., NEAR)? Or more interestingly, is DEAR closer to NEAR than to BEAR? If 
our training set consists of protein sequences, we face the similar problem of determining 

functional similarity based on sequence similarity; i.e., does the protein’s structure change 
if one replaces amino acid G by amino acid H? (Indeed biologists have produced mutation 
matrices that capture this notion [23].) 

The key technical question is how to learn a “good” distance metric from data (and 
optionally partial models provided by domain experts). This issue raises a large number of 
questions that have been addressed in statistical research on relevance and similarity, and 

that resulted in methods such as multidimensional scaling, singular value decomposition, 
principal components analysis, factor analysis [24,41] and vector quantization. Since the 
notions of relevance and similarity are somewhat ill-defined without a specific task in mind, 
there is substantial literature on axiomatic definitions of relevance and similarity [45]. 

Memory-based reasoning has its roots in work that dates back to near the beginning 
of this century, although of course computational methods arose much more recently. The 
earliest algorithms that might properly be classed as MBR methods date back to work in the 
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1960s on the application of local regression to a set of nearest neighbors, a technique known 
as kernel regression [30,38]. A good historical collection of nearest-neighbor algorithms is 

Dasarathy [ 151, which contains references going back to the 1950s. The use of local models 
for function estimation and smoothing in an MBR framework is described in Atkeson et 

al. [3], who also include a review of the literature. See also (21 for a variety of results on 

nearest-neighbor learning algorithms. 
Kernel density estimation and Parzen windows are broadly defined areas of non- 

parametric statistics that rely on memories to perform classification, to learn functions, and 
to estimate probability distributions [ 161. These techniques are widely used in statistics and 

pattern recognition. 
The use of the term memory-based reasoning in a broad context was introduced by 

Stanfill and Waltz [42], who also introduced the value difference metric (VDM) to define 

similarity when using symbolic-valued features. The VDM is an adaptive distance metric 

that adjusts itself to a database of examples. and can then be used for retrieval (see 

Section 4). 
Tree-based methods for partitioning data into regions (e.g., [3 1.321) such as k-d trees or 

decision trees [36] also can be used to define a relevant local neighborhood. Thus, instead 
of viewing a decision tree as a classification device in the MBR context, a decision tree 

defines a static partitioning of space into regions. In other words, the distance between data 
instances that are grouped in the same region (same leaf of the tree) is defined (implicitly) 
to be zero. Once a query is given, we can retrieve all the points in the relevant region of 
the tree-that is, all points which are distance zero to the query point-and perform local 
learning. The regions in pruned decision trees are not necessarily labelled by the same 
class label. Since decision trees can be viewed as a compact way to express probability 

distributions, this method will be considered as another variant of probabilistic MBR 
frameworks. 

In natural language processing we find some similar notions. For example, one can 
define the “semantics” of a verb as a probability distribution over the set of nouns that 

follow it 1351. Thus, each verb is mapped into a point in a high-dimensional real-valued 
space. Then the similarity of two verbs can be computed by computing the distance 
between the two probability distributions (such as the Kullback-Leibler divergence). There 

is a rich theory that studies such distances, which is often referred to as information 
geometry. 

In computer vision, some forms of memory-based reasoning have been a popular theme 

in applications such as character recognition and face recognition. For example, there is the 
notion of a chorus of prototypes where an object (instance) is defined again by a vector of 
distances to other objects [ 171. That is, each object is mapped into a probability distribution 
and the distance between two objects is determined by computing a standard distance 
(geodesic) in a space of probability distributions. A different but obviously related notion 
is the idea of radial basis functions defined over clusters of instances. However, relatively 
little work is available on using memory-based reasoning to perform complex visual tasks 
such as object recognition in a cluttered environment or 3-D navigation (see [l] for a few 
examples). 

In information retrieval, we find a recent use of Bayes networks to specify the notion of 
relevance of a document to a topic or a query [43]. In this domain, the notion of retrieving 



a relevant context or a document is related to our work. Recent papers in economics 
introduced the notion of “case-based decision theory” [ 191, where the utility of an action 

in a particular state is computed by using a kernel density estimation technique over a 

set of stored memories. Some very recent work in statistics generalizes traditional nearest 
neighbor learning with adaptive neighborhood techniques. There the issue is finding the 
correct (relevant) neighborhood to a given query in a classification task [ 18,211. Finally, 

in a collection of papers, Vapnik and his group introduce a theoretical notion of local 
learning which corresponds to learning a local function at a particular point in response to 

a query [9,47]. 

12. Conclusion 

We have described a framework for memory-based reasoning. This framework advocates 

the synthesis of memory-based reasoning algorithms based on probabilistic models 

(specified by the modeller or domain expert). The models are used to induce a notion 
of relevance on the domain. In this paper we focused on classification. However, more 
generally, given a query about a desired action in some state. we can retrieve the 
relevant neighborhood (as induced by the model) and perform the appropriate action by 
local learning on the set of instances in that neighborhood. The definition of relevant 
neighborhood is adaptive and will change as the database changes. It will also vary 

depending on the desired action. 
Our analysis considered a popular class of MBR procedures (MVDM) induced by 

a very simple Bayes network (the naive Bayes classifier). We showed that MBR has 

a greater representational capacity than the probabilistic model used to induce the 
transformation and therefore can be used for more general tasks. In particular, despite 
the computational similarity during training. MBR and the Bayesian classifier display 
several rather striking differences in their classification accuracy when applied to symbolic 
domains. We demonstrated that PEBLS, which uses the naive Bayes model to induce the 

MBR transform, outperforms naive Bayes under a wide range of conditions, including 
cases in which the instances are both dense and sparse with respect to the feature space, 

and in some simple domains. Previous work demonstrated the effectiveness of this class of 
MBR procedures in complex scientific domains [ 14,481. 

In the limit, when instances completely fill the space. we show that if naive Bayes 
can learn the distribution perfectly, then the system PEBLS that uses MVDM will always 
learn perfectly. Indeed. while naive Bayes cannot perform perfectly for some simple class 
definitions, PERU can achieve perfect accuracy on a wider range of classes. We also 
established some advantages of MVDM classifiers fot both symbolic and discretized rea- 
valued attributes. We showed that MVDM may be helpful for coping with irrelevant 
and noisy attributes. Thus, the convergence rate of MVDM’s accuracy is likely to be 
better than standard nearest neighbor when the number of irrelevant attributes is large. 
In some important cases, the convergence rate is dependent only on the number of relevant 
attributes. 

We introduced a notion of an explicit MBR transform on the data. The transform was 
induced by a probabilistic model in the form of a probabilistic Bayes network. The explicit 
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transformation on the data allows us to use spatial data structures to facilitate efficient 
retrieval. 

Much is left to be done. We are currently in the process of building a general system 
based on this framework. The system will provide a programming notation for specifying 

general probabilistic models, probabilistic model learning, automatic MBR transforms 
based on probabilistic models, retrieval of relevant contexts, and finally prediction by local 

learning. Our framework opens the door for a number of new variants of MBR which have 
not been explored in the literature. 

While we did not elaborate on this in depth, our approach suggests a generic way 

to incorporate “knowledge-based advice” into memory-based reasoning procedures. The 
advice in this case corresponds to a set of rules that can induce the structure of a 

probabilistic network. Then learning procedures can estimate the conditional probabilities 

that must be learned from data. The learned network is then used to induce an MBR 
transform on the data, mapping the data into a probability distribution space. That is, we use 

the probabilistic network to compute a set of probabilistic “features” which are included in 
the subsequent MBR inference. This perspective suggests several interesting possibilities. 
For instance, it suggests the possibility of providing approximate models, emphasizing the 
ability to compute probabilistic features efficiently, and then relying on MBR inference to 

“correct” for the simplified independence assumptions made by the modeler. 
Our framework suggests some interesting cognitive explorations as well, since memory- 

based reasoning may have desirable properties as a plausible form of cognitive activity. In 

this paper we focused on the practical aspects of this proposal, namely taking advantage 
of probabilistic model building algorithms, and suggesting a method to improve on their 
representational capabilities and accuracy. 
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